

2

15993 | RO 140Programmer’s Guide

infO(1)Robotics

 Introduction
	 This guide is structured into two comprehensive sections—“Walk-
through” and “Tailoring.” Together, they aim to support both absolute beginners
and more curious learners who want to understand not only how to program an
FTC robot, but also why the code works the way it does. We’ll mainly use Kotlin
because its syntax may be more intuitive and cleaner, but all these steps can be
easily followed in Java too.
	 The Walkthrough section serves as a practical, step-by-step introduc-
tion to FTC programming. It is specifically designed for individuals with no prior
coding experience who may suddenly find themselves responsible for program-
ming a competition robot. Each chapter breaks down the essentials in a clear,
approachable format: setting up the development environment, writing your
first OpModes, understanding motors and sensors, and building the confidence
needed to control a real robot. The goal is to provide an accessible path for new
programmers that is straightforward and can be easily used and further devel-
oped.
	 The Tailoring section transitions from hands-on tasks to deeper techni-
cal understanding. Here, we explore the core programming concepts that shape
FTC robotics: control flow, data structures, program architecture, abstraction, and
strategies for writing clean, scalable code. This material does not require access
to a robot and can be studied comfortably with just a laptop. It helps program-
mers understand how to customize, optimize, and refine their robot’s behavior,
transforming basic scripts into robust, competition-ready software.Although the
material may appear information-dense initially, each chapter becomes valuable
only after further research and practical testing; don’t merely read-apply the
concepts by experimenting and developing your own implementations.

1. Walkthrough
1.1. Setting up Android studio
	 Without further ado go to https://developer.android.com/studio and
click on download after reading and agreeing with the terms and conditions pro-
vided. Then an exe file will be downloaded and then you will have to follow the
steps that are opened in the new windows. (video)
	 These steps are for Windows, for the sake of the majority, but you can

also install it on mac and linux and the processes are similar, and you can check
these out right here https://developer.android.com/studio/install.

	 Congrats, you just finished setting up Android Studio.

3infO(1)Robotics

15993 | RO 140 Programmer’s Guide

1.2. FTC-SDK
	 For us to actually start programming we can t just start a new empty
project. We need a module that is used to build the android app for us to be
able to control an actual robot. We recommend to start with roadrunner-quick-
start since it has a built in ftc dashboard, and we can skip the step of adding it
in our project later on. For us to actually start programming we can t just start a
new empty project. We need a module that is used to build the android app for
us to be able to control an actual robot. We recommend to start with roadrun-
ner-quickstart since it has a built in ftc dashboard, and we can skip the step of
adding it in our project later on.
	 Adding it to android studio should be pretty simple. On the welcome
page you have these options:

	 Choose clone repository option and then paste the quickstart’s url
https://github.com/acmerobotics/road-runner-quickstart, and then wait a few
seconds for it to load.

Screenshot of the video opened using the
previous link

infO(1)Robotics4

15993 | RO 140Programmer’s Guide

1.3. Installing ADB
	 ADB (Android Debug Bridge) is a versatile and flexible tool used to
communicate with your FTC control system devices—in our case the Control
Hub. It allows you to upload your code wireless, which we think gives a major
advantage especially during competitions, due to the fact that you can be out of
the field and update the code without worrying about other robots.

	 Fortunately, installing ADB is quick and straightforward.
	 To begin, head to the official Android Platform Tools page on Google’s
developer site: developer.android.com/tools/releases/platform-tools. Look for
the download links labeled “SDK Platform-Tools” for your operating system. After
reading and agreeing to Google’s terms, download the corresponding ZIP file.
	 Once the download is finished, extract the ZIP archive to a location you
can easily access—many teams prefer creating a dedicated folder like C:\adb on
Windows or placing it inside their home directory on macOS or Linux. Inside this
extracted folder, you’ll find the adb executable along with other useful platform
tools.
	 On Windows, you may also want to add this folder to your system PATH.
Doing so allows you to run ADB commands from any terminal window without
navigating to the folder manually. While this step is optional, it greatly im-

proves convenience when working with your Robot Controller or Control
Hub.

Screenshot from Code Structure

	 You can see that there are already some classes, we aren’t going to use
them right now so go ahead and make 2 new packages named “roadrunner”, and
“opmodes”, and add all the files in it.Your project should look like this .

TeamCode/src/main/java/org/firstinspires/ftc/teamcode
	 All the code will be written on this path:

5infO(1)Robotics

15993 | RO 140 Programmer’s Guide

	 If you’re using macOS or Linux, the installation process is nearly iden-
tical: download, extract, and optionally add the tools to your PATH. A detailed
guide for each platform can be found on the same page you downloaded the
tools from.

	 If all the steps are followed correctly you should be able to upload your
code on the robot, so go ahead and press on the green row.

1.4. What we program
	 In the FTC ecosystem, the Control Hub serves as the central brain of
your robot—the place where all your code actually runs. Every decision your
robot makes, every motor movement, and every sensor reading is processed
through this device. When you write software in Android Studio, this is the hard-
ware that ultimately executes your instructions during a match.
	 The Control Hub is often paired with an Expansion Hub when additional
ports are needed. These two devices are linked using two cables:
•	 one power cable, which supplies electrical energy to both hubs;
•	 one data cable, which allows them to communicate seamlessly as a unified

control system.
	 To upload, run, and test your code, your robot must have a battery con-
nected. Without power, the hubs cannot boot, and your computer won’t be able
to communicate with them through ADB or the FTC Driver Station.
	 Both the Control Hub and Expansion Hub provide connection ports for
all the essential hardware components of your robot. This includes:

	 And that’s it—your computer is now equipped with ADB, to start using
it just open a new terminal window and write adb to check if it is installed. Then
plug in a battery in your control hub and connect to the wifi address of your ro-
bot.Write adb connect 192.168.43.1:5555 in the terminal’s window and it should
confirm that it’s connected. Now you should see the control hub device in the
available devices tab.

	 Other useful adb commands are adb kill-server, adb disconnect and
adb devices. if you change the wifi address and then try to connect again, some-
times you may need to use the adb disconnect and adb kill-server commands and
then try connecting again. Worst case, if this doesn’t work, just power cycle(re-
start the robot) and disable and re-enable the wifi of your laptop.

infO(1)Robotics6

15993 | RO 140Programmer’s Guide

•	 sensors such as distance sen-
sors, IMUs, limit switches,
cameras, and more.

1.5. Using the driver station and dashboard
	 For this step you should install the ftc robot controller and ftc driver
station app on an android device. On your device go on google and paste this link
https://github.com/FIRST-Tech-Challenge/FtcRobotController/releases and
press install these two apk’s:

•	 servos for precise positional
control;

•	 DC motors for drive trains and
mechanisms,- we can use them
without an encoder for contin-
uous rotation or with encoder
if we need our motor to hold a
position;

7infO(1)Robotics

15993 | RO 140 Programmer’s Guide

	 Once installed you can connect to the robots’ wifi and then open ftc
driver station app.

	 Your robot code is organized into different programs called OpModes
(TeleOp, Autonomous, or Test).

	 With the Driver Station, you can:
•	 view the list of all available OpModes on the robot;
•	 select the one you want to run, and start or stop it during a match or while

testing;
•	 connect controllers for driver practice.
	 Before running an opmode you should go to three dots->Configure and
then make a new configuration in which you can add your motors and servo
names that you are going to be using in the code.
	 Dashboard is like a driver station but on your laptop. You already have it
installed if you choose the quickstart, so while you are connected to the robot’s
wifi address you can navigate to 192.168.43.1:8080/dash on your browser.
	 If you started with another project you could set it up in a few easy steps

Installation
Basic
	 Open build.dependencies.gradle. In the repositories section add ma-
ven { url = ‘https://maven.brott.dev/’ }, and in the dependencies section add
implementation ‘com.acmerobotics.dashboard:dashboard:0.5.1’.
	 Note: If you’re using OpenRC or have non-standard SDK dependencies,
add the following exclusion.
implementation(‘com.acmerobotics.dashboard:dashboard:0.5.1’) {
 exclude group: ‘org.firstinspires.ftc’
}

infO(1)Robotics8

15993 | RO 140Programmer’s Guide

	 After every gradle change you should press the sync button and eventu-
ally build your code while connected to a wifi that has internet.

1.6. Programming servos and motors
	 Now that we have everything done we can get to the code writing.
	 Add a new kotlin class in the opmodes package and name it ServoTest-
ing, here is a sample of the code.Note that var are variables that can be changed,
and val are values that are constant.

	 After adding it, try uploading your code and testing it using a dashboard.
You can change the value of the servoposition on the left side of the page.

9infO(1)Robotics

15993 | RO 140 Programmer’s Guide

if you are going to be using encoders your code should be slightly different

	 Make sure you add the servos and the motors in your config and acti-
vate it before testing your opmode.

	 Great, now you know how to program servos and motors.

1.7. Telemetry usage
	 Telemetry is one of the most powerful tools you have as an FTC pro-
grammer—it’s your real-time window into what your robot is thinking, sensing,
and doing. While the robot runs, telemetry lets you display live data on the Driver
Station screen so you can understand what is happening internally and diagnose
issues quickly. Think of it as your robot’s voice: every variable, sensor reading,
motor position, or debug message can be sent back to you through telemetry.

	 In the early stages of programming, telemetry helps you confirm that
motors are running in the correct direction, that sensors are wired properly, and
that your code is behaving the way you expect. As your robot becomes more
 complex, telemetry becomes essential for monitoring encoder values,
PID loops, state machines, vision results, and even timing information.

infO(1)Robotics10

15993 | RO 140Programmer’s Guide

	 Here’s a simple example of how telemetry is used inside an OpMode:

	 ddData() sends information to the Driver Station, while update() re-
freshes the display. Without the update call, telemetry will not show any new
values.
	 You can also format messages, send multiple lines at once, or print
debug information only when certain conditions are met. Telemetry is flexible
enough to support anything from quick tests to advanced diagnostics.

	 As you continue writing more sophisticated code—especially auton-
omous routines—telemetry becomes your best friend. When something goes
wrong (and believe us, it will), the fastest way to track down the issue is by
printing the internal values you’re curious about.
	 Use telemetry often, use it early, and use it smartly. Your robot always
knows what’s going on—telemetry simply lets it tell you.

1.8. Drivetrain class
	 Every robot has a drivetrain, and 90% of these are mecanum so now
that we know how to program a motor, it’s time to write a class that consists of
four. Go ahead and add new package to your project named subsystems where
you’ll then add the drivetrain class:

11infO(1)Robotics

15993 | RO 140 Programmer’s Guide

- the drive function will be called in the loop
	 Now it’s time for you to give life to your class and write an actual op-
mode, and then drive around your chassis.Add this DrivetrainTesting class in your
opmodes package.

	 Now you can upload your code, navigate to the dashboard in your
browser, connect a controller and test your chassis.Note that after connecting
your controller you should press start+a/b.

infO(1)Robotics12

15993 | RO 140Programmer’s Guide

1.9. Claw Class
	 Here is a code sample for a claw that you can later on edit and custom-
ize. This could also be a template for other subsystems that consist of servos.

	 This can also be easily implemented into a ClawTesting opmode:

13infO(1)Robotics

15993 | RO 140 Programmer’s Guide

1.10. Sample Teleop
	 In a ftc match there are two periods, teleop and auto. During the teleop
period two drivers control the robot to complete tasks. You finally achieved all
the knowledge to write a basic teleop.Right here is a simple code sample that
handles the drivetrain and claw inputs.

	 Done! You just wrote your first teleop. For further development
you can add your own subsystems such as an Extendo, Lift, or Linkage.

infO(1)Robotics14

15993 | RO 140Programmer’s Guide

1.11. The autonomous period
	 The autonomous period is where FTC programming begins to feel truly
advanced—and truly exciting. During these 30 seconds, your robot must operate
entirely on its own, without any input from drivers. To make this possible, your
robot must know:
•	 where it is on the field;
•	 where it needs to go, and how to get there accurately.

	 This is where motion planning comes in.
	 A motion planner is an open-source library that handles robot localiza-
tion (tracking your position on the field) and trajectory generation (computing
smooth, precise paths for your robot). Instead of hard-coding motor powers or
guessing distances, a motion planner lets you command your robot using re-
al-world units like inches, degrees, and coordinates.
	 In this guide, we’ll be using Pedro Pathing, a motion planning library
widely used in the FTC community for its:
•	 excellent precision;
•	 simplicity;
•	 easy integration;
•	 powerful trajectory features;
•	 and reliable localization during the entire autonomous period.
	 With Pedro Pathing, your robot can move smoothly, correct its posi-
tion, follow curves, and perform complex tasks with confidence - even in a tight
30-second autonomous window.
	 For this step you’ll need a localizer: go to 2.3 to pick your localizer.

Adding Pedro Pathing to Your Project

	 Here’s a simple, clean process to get Pedro Pathing installed inside your
FTC codebase.
Step 1: Download the Library
	 Go to the Pedro Pathing GitHub repository and download the latest re-
lease of the library.
	 (You will usually download a folder named something like PedroPathing
or a .zip file with the library’s source.)

Step 2: Place It Into Your TeamCode Module
Inside Android Studio:

1. Open your project.
2. Navigate to:
 TeamCode/src/main/java/org/firstinspires/ftc/teamcode/

15infO(1)Robotics

15993 | RO 140 Programmer’s Guide

3. Create a new folder called pedroPathing or localization (your choice).
4. Copy all the Pedro Pathing files into that folder.

	 Your project tree should now include the Pedro Pathing classes along-
side your subsystems.

Step 3: Add Dependencies to build.gradle If Requiredv
	 Some versions of Pedro Pathing use RoadRunner math utilities or re-
quire Kotlin.
	 Make sure your TeamCode/build.gradle includes:

and ensure Kotlin is enabled in your FTC project (which you already have).
Step 4: Sync and Rebuild Step 4: Sync and Rebuild
	 Click:
File → Sync Project with Gradle Files
	 Android Studio will rebuild your project, registering the new library au-
tomatically.
Step 5: Constants and tuning
	 Before starting the actual writing you have to configure your constants,
pick your localizer and tune it.All the required steps are right here and should
be followed carefully, step by step https://pedropathing.com/.Come back after
reading all the documentation.

1.12. Just Write
	 Now that you understand the basics, it’s time to do the most important
(and honestly, the most exciting) part of learning to program: just write code.
Start experimenting, breaking things, fixing them, and trying out every idea that
pops into your mind. This is where your creativity becomes the driving force be-
hind your robot.
	 Don’t worry if things don’t work right away—they won’t. In fact, around
90% of the time your code will fail, crash, behave strangely, or just refuse to run
at all. This is completely normal and happens to everyone, from beginners to
professional developers.
But here’s the magic: that remaining 10%—when your code finally works, when
the robot moves exactly how you imagined, when everything clicks—that mo-
ment is unbelievably rewarding. It’s the feeling that makes all the debugging,
searching, rewriting, and experimenting absolutely worth it.

infO(1)Robotics16

15993 | RO 140Programmer’s Guide

	 Programming isn’t about writing perfect code on the first try. It’s about
building, breaking, learning, and improving. So jump in, write boldly, try new con-
cepts, play with different approaches, and watch your ideas slowly evolve into
real, functioning systems on your robot.
	 Every line of code you write gets you one step closer to becoming a
stronger, more confident programmer.

2.0 Tailoring

	 This section moves from the Walkthrough’s “how-to” into “how and
why.” It focuses on the architecture, tools, and engineering practices that let a
team turn working code into reliable, competitive robot software. The material is
intended for programmers who know the basics and want to structure, tune, and
scale their codebase.
	 Contents:
•	 2.1 Version control;
•	 2.2 Gradle & build tooling;
•	 2.3 Localizers (pose estimation);
•	 2.4 Motion planners & trajectory followers;
•	 2.5 Autonomous strategy design;
•	 2.6 TeleOp strategy design;
•	 2.7 Camera pipelines & vision;
•	 2.8 Programming sensors & filtering;
•	 2.9 Other useful tools;
•	 2.10 Ways of learning;
•	 2.11 How to improve.

 2.1 Version control
Why it matters
•	 Tracks history, enables rollbacks, and supports collaboration.
•	 Facilitates code review and reliable releases for competition builds.

17infO(1)Robotics

15993 | RO 140 Programmer’s Guide

Recommendations
•	 Use Git with a hosted provider (GitHub, GitLab).
•	 Branching model: trunk-based or short-lived feature branches.
•	 Keep `main`/`master` stable. Create `feature/*` or `bugfix/*` branches for

work.
•	 Commit messages: short summary line + optional body explaining why.
•	 Use `.gitignore` tuned for Android/FTC (ignore build/, .gradle/, .idea/, local.

properties).
•	 Tag releases (v2025.1-auton-tested) for known-good competition builds.
•	 Protect `main` with branch protection rules and require PR reviews before

merge.
Practices
•	 Open small pull requests; include screenshots, logs, or a short test plan.
•	 Code reviews: check architecture, tests, and telemetry clarity—don’t only

check syntax.
•	 Use CI to run build and lint tasks before merging.

Example .gitignore entries:
```text
/.gradle/
/build/
/local.properties
/.idea/
/*.iml
```

 2.2 Gradle & build tooling
Why it matters
•	 Builds, dependency management, and packaging OpModes into Android

APKs.
Key concepts
•	 Gradle wrapper (`gradlew`) ensures reproducible builds.
•	 `build.gradle(.kts)` in the app module configures compileSdk, dependencies,

and ProGuard/R8 rules.
•	 Use dependency versions centrally and document changes.
Practical tips
•	 Keep the FTC SDK version pinned; document upgrade steps.
•	 Use flavors or build types if you need different configs (e.g., `de-

bug`/`release`).

infO(1)Robotics18

15993 | RO 140Programmer’s Guide

•	 Add custom Gradle tasks for common ops (generate docs, run static analy-
sis).

•	 Keep builds fast: enable Gradle daemon, configure parallel workers, avoid
heavyweight tasks on every change.

•	 Cache generated artifacts and consider CI runners with Android SDK prein-
stalled.

Useful tasks
•	 `./gradlew installDebug` — in-

stalls debug APK to the connect-
ed device.

•	 `./gradlew lint` — run static
analysis.

•	 Create tasks that export a
“competition” APK with settings
optimized for matches.

2.3 Localizers (pose estimation)
Goal
•	 Estimate the robot’s pose (x, y, heading) reliably in the field coordinate

frame.

Common approaches
•	 Odometry-only: encoders on three tracking wheels (two lateral, one perpen-

dicular) - good baseline.
•	 IMU fusion: combine IMU heading with odometry to handle slippage and

drift.
•	 Sensor fusion: combine vision (AprilTags), range sensors, and odometry

(Kalman/Extended Kalman or complementary filters).

19infO(1)Robotics

15993 | RO 140 Programmer’s Guide

Design considerations
•	 Frame of reference: choose field-centric coordinates and keep conversions

central.
•	 Update rate: localizer should run at a constant, reasonably high rate (e.g.,

50-200 Hz) depending on your planner.
•	 Latency: minimize and account for it in control loops.
•	 Error modeling: characterize encoder ticks → distance, IMU noise, and slip.

Implementation sketch (Kotlin-style)
```kotlin
interface Localizer {
  fun getPose(): Pose2d
  fun update() // read sensors and integrate
  fun reset(pose: Pose2d)
}
```
Tips
•	 Test with short runs, lateral movements, and rotations to find systematic

errors (wheelbase, lateral offset).
•	 Add diagnostics: log wheel deltas, IMU headings, and final pose errors.

2.4 Motion planners & trajectory followers

What they do
•	 Motion planner: generate a feasible path/trajectory from start to goal con-

sidering kinematic/physical limits.
•	 Trajectory follower: execute the planned path using closed-loop controllers.

infO(1)Robotics20

15993 | RO 140Programmer’s Guide

Types of planners
•	 Geometric planners (splines, lines) for smooth paths.
•	 Kinematic motion profiles (trapezoidal, S-curve) for 1D motion.
•	 Full trajectory generation (profiles for x,y,heading) used by libraries like Road

Runner.
Controllers & profiles
•	 PID controllers for position/heading.
•	 Feedforward (kV, kA, kStatic) to overcome predictable dynamics.
•	 Motion profiling: control velocity/acceleration/jerk to respect hardware lim-

its and maintain stability.
Popular libraries
•	 Road Runner — widely used for FTC trajectories and localizers.
•	 Pure Pursuit — simpler path-following algorithm good for some robots.

Tuning checklist
•	 Measure physical constraints: max velocity and acceleration under load.
•	 Tune feedforward first (kV from velocity test), then PID.
•	 Validate with short trajectories before full auton sequences.

2.5 Autonomous strategies

Design patterns
•	 State machines: deterministic flow that is easy to debug.
•	 Command/Action scheduling: each action (drive, turn, intake) is a command

with start/stop and completion conditions.
•	 Behavior tree or simple sequencer for more complex branching.

Robustness
•	 Timeouts for every action.
•	 Sensor checks (e.g., ensure goals reached within tolerances).
•	 Safe abort behavior: stop motors, set servos to safe positions.

Concurrency
•	 Allow parallel actions where safe (move + intake).
•	 Keep shared resource arbitration explicit (who drives the drivetrain?).
Example command pseudo-structure

```kotlin
class DriveToPose(val target: Pose2d): Command {
  override fun init() = planner.followTrajectoryAsync(planner.tra-
jectoryTo(target))
  override fun update() = planner.update()
  override fun isFinished() = planner.isIdle()
}
```


21infO(1)Robotics

15993 | RO 140 Programmer’s Guide

Testing strategies
•	 Simulate trajectories on a localizer beforehand (plot paths).
•	 Record telemetry from test runs and replay logs to find systematic errors.

2.6 TeleOp strategies
Principles
•	 Prioritize driver intention: map controls so drivers can reliably predict robot

behavior.
•	 Keep toggles and stateful controls simple and well-documented.
Common techniques
•	 Deadzones and response shaping: apply deadzone and optionally exponen-

tial scaling to sticks for precision.
•	 Field-centric vs robot-centric control:
•	 Field-centric: convert joystick vectors to field frame using gyro heading

(makes direction intuitive).
•	 Edge detection for toggles: act on button press transitions rather than held

state.
•	 Mode switches: speed multipliers (precision mode, turbo mode) and sub-

system locks.

Example control smoothing
```kotlin
fun deadzone(input: Double, threshold: Double) =
    if (kotlin.math.abs(input) < threshold) 0.0 else input

fun expo(input: Double, exponent: Double) = Math.signum(input) * Math.
pow(Math.abs(input), exponent)
```
Driver development

•	 Provide in-op mode telemetry to show current mode and important sensor
values.

•	 Build a driver practice mode with simulated field elements.

2.7 Camera pipelines & vision

Photo of the Limelight
camera

infO(1)Robotics22

15993 | RO 140Programmer’s Guide

Use cases
•	 AprilTag detection for field-relative positioning.
•	 Object detection (cones, rings) for decision making.
•	 Line detection for alignment.

Architecture
•	 Camera acquisition → image transform → detection → postprocessing →

result broadcast (telemetry, shared object).
•	 Keep heavy processing off the main robot thread. Use an executor or async

pipeline.

OpenCV tips
•	 Start with simple color segmentation in HSV, then refine with morphological

operations.
•	 Calibrate thresholds under the team’s actual lighting conditions; use a tuning

UI.
•	 Use contour filtering (area, aspect ratio) to reduce false positives.

AprilTag example (Kotlin pseudo)
```kotlin
class AprilTagPipeline: CameraPipeline {
  override fun processFrame(frame: Mat): List<Detec-
tion> {
    // convert to grayscale, run detector, return tag poses
  }
}
```

Performance
•	 Use cropping and downscaling to keep frame size modest.
•	 Consider running detection at lower FPS (e.g., 10-20) and interpolate results.

2.8 Programming sensors
Sensor types and tips
•	 Encoders: calibrate ticks → distance; watch for gear backlash.
•	 IMU: calibrate at startup; use fused-heading where available; filter gyro

noise.
•	 Color & distance sensors: calibrate for reflectance and ambient light; use

multiple readings and median filters.
•	 Range sensors: apply smoothing and handle timeouts.

23infO(1)Robotics

15993 | RO 140 Programmer’s Guide

Filtering & fusion
•	 Simple filters: moving average, median, exponential smoothing.
•	 Complementary/Kalman filters for pose: use odometry for short-term accu-

racy and vision for long-term correction.

Calibration
•	 Always document and automate calibration steps (scripts or opmodes).
•	 Store calibration constants in a central config file or preferences.
Diagnostics
•	 Add a sensor dashboard showing raw and processed values.
•	 Log sensor values to CSV during test runs for offline analysis.

2.9 Other useful tools
Telemetry & logging
•	 Use structured logging for events and errors.
•	 Telemetry should be concise during matches; verbose options for debugging

builds.
Dashboards and simulators
•	 FTC Dashboard — live telemetry, camera preview, and tuning UI.
•	 Local simulation frameworks (Road Runner simulator) and unit-test-friendly

components.
•	 MeepMeepTesting - simulator for autonomous trajectories
•	 Scrcpy - mirrors your driver station on your laptop-useful for editing your

config fast

infO(1)Robotics24

15993 | RO 140Programmer’s Guide

Photo from FTC Dashboard Template

Meep Meep Trajectory Simulator

25infO(1)Robotics

15993 | RO 140 Programmer’s Guide

Static analysis & testing
•	 Run linters and Kotlin/Java formatters.
•	 Write unit tests for pure logic (trajectory math, state machines).
•	 Integration tests: hardware-in-the-loop where possible.
Performance tools
•	 Android Studio profiler to check CPU and memory.
•	 Measure loop timings and garbage collection; avoid frequent allocations in

tight loops.

2.10 Ways of learning
Practical approaches
•	 Read, run, and dissect working teams’ repositories.
•	 Hands-on: build small projects that exercise a single subsystem (e.g., PID-

based slide).
•	 Pair programming with drivers and mentors to align code with operator

needs.
Resources
•	 FTC SDK docs and sample code.
•	 Road Runner docs and examples.
•	 FTCLib for helpful abstractions and hardware wrappers.
•	 Community: FTC Discord servers, local mentors, and official forums.

Learning plan
•	 Foundations: motor & sensor basics, event loops, unit conversions.
•	 Intermediate: localizers, planners, command patterns.
•	 Advanced: modeling robot dynamics and automated tuning.

2.11 How to improve (team & code)
Code quality
•	 Use static analysis and consistent style.
•	 Refactor: keep subsystems small and single-responsibility.
•	 Write small, testable functions; minimize global state.
Process
•	 Daily or weekly code reviews; share demo runs.
•	 Keep a “competition” branch for stability; only merge well-tested

changes.
•	 Practice runs with drivers under match-like conditions.

infO(1)Robotics26

15993 | RO 140Programmer’s Guide

Tuning & iteration
•	 Collect telemetry data and make tuning part of your workflow.
•	 Use repeatable test scripts to validate controller changes.
•	 Track changes with versioned tags and changelogs.
Competition-readiness checklist (short)
•	 Core subsystems tested and within tolerances.
•	 Autonomous routines run reliably with timeouts.
•	 TeleOp control mapping validated with drivers.
•	 Safety behaviors confirmed (estop, safe defaults).
•	 Backup build on phone/robot and a rollback commit/tag.
Appendix: Patterns and templates
•	 Command pattern for actions (init, update, isFinished, done).
•	 “Subsystem” interface: encapsulates hardware and exposes commands.
•	 Central scheduler: coordinates commands and handles resource conflicts.

Closing notes
•	 The Tailoring section is intentionally pragmatic: pick a small set of patterns

and tools, get comfortable with them, then expand.
•	 Prioritize repeatability, testability, and clear telemetry—these give you the

confidence to iterate quickly and perform under pressure.

27infO(1)Robotics

15993 | RO 140 Programmer’s Guide

Impresions

